CSC Major Elective Course Detail

For Students Admitted in 2007-08

Content

1. Undergraduate Student Handbook	2
CSC Major Programme	2
Recommended course pattern	2
2. Major Elective Course Detail	3
CSC Coures	3
IEG Coures	20
SEG Coures	21
DSE Coures	23
MKT Coures	25

1. Undergraduate Student Handbook

CSC Major Programme

Students are required to complete a minimum of 74 units of Major courses as follows (Note):

(i) Required Courses: 59 units CSC1130, 1140, 2100, 2110, 2800, 3100, 3120, 3130, 3150, 3160, 3170, 3180, 3250, 3420, 4010, 4020, ELT1111, ERG2020, 2040, MAT2310
(ii) Elective Courses: 15 units CSC1020, 3210, 3220, 3230, 3260, 3270, 3280, 3290, 4120, 4130, 4140, 4160, 4260, 4430, 5110, 5120, 5150, 5160, 5170, 5180, 5210, 5230, 5240, 5250, 5280, 5310, 5320, 5330, 5340, 5350, 5360, 5390, 5420, 5430, 5460, 5470, CEG3430, 3470, 3480, 3490, 5010, 5020, 5270, 5330, IEG3050#, 4180#, SEG3420#, 3430#, 3490#; and any one course from (DSE3020, 4070, 4150, 4210, 4250, MKT4080)

Total: 74 units

Recommended course pattern

Term 1	Units	Term 2	Units	Term 3	Units
CSC1130	3	CSC1140	1	CSC3130	3
CSC2110	3	CSC2100	3	CSC3150	3
ERG2020	3	CSC2800	3	CSC3160	3
MAT2310	3	ERG2040	3	CSC3180	3
		ELT1111	3	Elective	3
	12		13		15
Term 4	Units	Term 5	Units	Term 6	Units
CSC3100	3	CSC3250	2	CSC4020	4
CSC3100 CSC3120	3 3	CSC3250 CSC4010	2 4	CSC4020 Electives	4 3
CSC3100 CSC3120 CSC3170	3 3 3	CSC3250 CSC4010 Electives	2 4 6	CSC4020 Electives	4 3
CSC3100 CSC3120 CSC3170 CSC3420	3 3 3 3	CSC3250 CSC4010 Electives	2 4 6	CSC4020 Electives	4 3
CSC3100 CSC3120 CSC3170 CSC3420 Elective	3 3 3 3 3	CSC3250 CSC4010 Electives	2 4 6	CSC4020 Electives	4 3

Note:

Major courses at 3000 and above level will be included in the calculation of the Major GPA for honours

classification. Courses with "#" and ERG3910, 3920 are to be included in the Major GPA as well.

2. Major Elective Course Detail

Course Code	CSC3210
Course Title	PRINCIPLES OF MULTIAGENT SYSTEMS
Unit	3
Course Detail	This course discusses the principles of multiagent systems. Topics
	include interactions, coordination, organizations and
	communications in multiagent systems; agent actions and
	behaviours; artificial minds and task distribution.
	Prerequisite: CSC1110 or 1120 or 1130.

CSC Coures

Course Code	CSC3220
Course Title	ALGORITHMS FOR BIOINFORMATICS
Unit	3
Course Detail	First, introducing basic knowledge of DNA, genes, genomes,
	proteins, RNA, replication, transcription and translation. Then,
	introducing basic algorithms, such as dynamic programming,
	tree/graph searching and matching, context free grammar, etc, and
	applications to bioinformatics for sequence comparison, alignment
	and motifs; gene recognition and microarray; phylogenetic trees,
	protein structure and motif recognition.

Course Code	CSC3230
Course Title	FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE
Unit	3
Course Detail	Basic concepts and techniques of artificial intelligence.
	Knowledge representation: predicate logic and inference, semantic
	networks, scripts and frames, and object-oriented representation.
	Searching: such as A*, hill-climbing, minimax and alpha-beta
	pruning. Planning: the frame problem and the STRIPS formalism,
	representation schemes and planning strategies. Neural networks:
	learning algorithms, neural architecture and applications. Natural
	language processing. Knowledge acquisition and expert systems:
	properties, techniques and tools of expert systems.
	Prerequisite: CSC2100.

Course Code	CSC3260
Course Title	PRINCIPLES OF COMPUTER GRAPHICS
Unit	3
Course Detail	Fundamental computer graphics techniques and algorithms will be
	introduced. Topics to be covered include: graphics hardware and
	interaction devices, transformation of coordination systems, scan
	conversion algorithms, hidden surface algorithms, illumination
	models and shading, rendering, texture mapping, computer
	animation and visualization. Prerequisite: CSC2100 or 2520.

Course Code	CSC3270
Course Title	ADVANCED PROGRAMMING LABORATORY
Unit	2
Course Detail	The course will mainly focus on programming exercises for
	advanced data structures and algorithms. Topics include dynamic
	programming, computational geometry, number theory,
	simulation, combinatorial problems, optimization techniques,
	graph theory, etc.
	Prerequisite: CSC2100. Corequisite: CSC3160.

Course Code	CSC3280
Course Title	INTRODUCTION TO MULTIMEDIA SYSTEMS
Unit	3
Course Detail	This course covers the design and implementation of modern
	multimedia systems. Topics include multimedia systems design,
	multimedia data representation, multimedia hardware and
	software, multimedia communication and networking, multimedia
	programming and multimedia information systems.

Course Code	CSC3290
Course Title	COMPUTATIONAL PHOTOGRAPHY
Unit	3
Course Detail	Computational Photography is an emerging new field created by
	the convergence of computer graphics, computer vision and
	conventional photography. Its main purpose is to overcome the
	limitations of the traditional camera by using computational
	techniques to produce a richer, more vivid, perhaps more
	perceptually meaningful representation of our visual world. The
	content of this course is to study ways in which samples from the
	real world (images and video) can be used to generate compelling
	computer imagery. We will learn how to acquire, represent, and
	render scenes from digitized photographs. The following topics
	will be covered: cameras, image formation and models; image
	manipulation (warping, morphing, mosaicing, matting,
	compositing); data-driven synthesis; visual perception; high
	dynamic range imaging and tone mapping; image-based lighting;
	non-photorealistic rendering; and other applications in
	photography.
	Prerequisite: CSC2100.

Course Code	CSC4120
Course Title	PRINCIPLES OF COMPUTER GAME SOFTWARE
Unit	3
Course Detail	This course aims at establishing the principles, techniques and
	tools in the design and development of computer game software
	with focus on the real time performance consideration. Topics
	include: stages in computer game development, concept of game
	engine, rendering considerations, physics effects, artificial
	intelligence (AI), audio effects, scripting and environment for
	game project development.
	Prerequisite: CSC2100 or 2520. Prerequisite/Corequisite:
	CSC3260 or 3550.

Course Code	CSC4130
Course Title	INTRODUCTION TO SYSTEM ADMINISTRATION
	LABORATORY
Unit	1
Course Detail	(Not for Computer Science Minors.) The purpose of this course is
	to introduce the basic knowledge of system administration.
	Sample laboratory work include system installation, system
	upgrade, resource configuration and security setup.
	Prerequisites: CSC3150 or CEG3150, and CSC4430 or CEG4430.

Course Code	CSC4140
Course Title	OPEN-SOURCE SOFTWARE PROJECT DEVELOPMENT
Unit	3
Course Detail	This course is to introduce techniques in developing software
	projects. Topics include leveraging the web server, the database
	server, and the scripting languages, such as the LAMP (Linux,
	Apache, MySQL, PHP) platform, to develop software projects,
	advanced debugging techniques, and performance tuning
	techniques. Also, this course will introduce the knowledge on
	software licensing, such as the GNU public license (GPL) and the
	Berkeley Software Distribution (BSD) license. Last but not least,
	this course emphasizes in arousing the creativity and fun in
	developing software projects.
	Prerequisite: CSC2100.

Course Code	CSC4160
Course Title	DISTRIBUTED AND PARALLEL COMPUTING
Unit	3
Course Detail	This course introduces concepts, models and implementations
	related to distributed and parallel computing. Topics include
	parallel and distributed system architectures, concurrent
	languages, synchronization and concurrency control techniques,
	and applications in distributed databases.

Course Code	CSC4260
Course Title	CURRENT TOPICS IN COMPUTING TECHNIQUES
Unit	3
Course Detail	This course aims at providing the students with the latest
	knowledge of advancements in pure or applied computer science.
	Topics covered in this course will vary from year to year, subject
	to the availability and speciality of the teachers.

Course Code	CSC4430
Course Title	DATA COMMUNICATION AND COMPUTER NETWORKS
Unit	3
Course Detail	This course is designed to present a systematic approach to the
	study of data communication and computer networks. The ISO
	OSI seven layered protocols are accepted as the framework for the
	course. Physical layer includes digital data transmission, data
	encoding and data communication techniques. Medium access
	sublayer includes ALOHA control protocols, IEEE 802 local area
	network protocols and fiber optic network protocols. Data link
	layer design issues, error detection and correction, sliding window
	protocols, network layer design issues, routing algorithms and
	internetworking. Transport layer and session layer design issues
	and examples on application layer protocols.

Course Code	CSC5110
Course Title	ADV TOP IN SOFTWARE ENGINEERING
Unit	3
Course Detail	Formal and advanced quantitative approaches in software
	engineering. Formal specifications: algebraic and model-based
	specifications, reasoning and proving, formal refinements and
	transformations from specifications to programmes. Software
	security: encryption theory and systems, viruses and other
	software attacks, controls and protections. Software reliability:
	models, theory and applications.

Course Code	CSC5120
Course Title	ADV TOPICS IN DATABASE SYSTEMS
Unit	3
Course Detail	(Not for students who have taken SEG5010.) This course will
	introduce to students advanced topics in database systems
	including advanced data structures, concurrency control, deadlock
	resolutions, recovery schemes, distributed database systems,
	multimedia database indexing techniques and data mining.
	Prerequisite: CSC3170.

Course Code	CSC5150
Course Title	LEARNING TH. AND COMPUT. FINANCE
Unit	3
Course Detail	This course aims to introduce the computational learning theory
	for applications to various areas of finance. This course consists of
	two parts. The first part gives an introduction of basic
	mathematical methods in finance. The second part deals with
	nonlinear computing models, Bayesian Ying-Yang unified
	learning theory, other computational learning techniques and their
	applications to FOREX or stock forecasting, portfolio
	optimization and programmed trading.

Course Code	CSC5160
Course Title	TOPICS IN ALGORITHMS
Unit	3
Course Detail	This course will introduce to students topics in algorithms. The
	detailed contents may be changed from year to year depending on
	the current development and teacher specialty.

Course Code	CSC5170
Course Title	THEORY OF COMPUTATION COMPLEXITY
Unit	3
Course Detail	Deterministic and non-deterministic Turing machine, Church's
	thesis, uncomputability and intractability, NP-completeness,
	polynomial time hierarchy, probabilistic computation, predicate
	calculus and incompleteness.

Course Code	CSC5180
Course Title	TECHNIQUES FOR DATA MINING
Unit	3
Course Detail	Data mining provides useful tools for the analysis, understanding
	and extraction of useful information from huge databases. These
	techniques are used in business, finance, medicine and
	engineering. This course will introduce the techniques used in data
	mining. Topics will include clustering, classification, estimation,
	forecasting, statistical analysis and visualization tools.

Course Code	CSC5210
Course Title	ADV TOPICS IN COMP GRAP & VISUAL
Unit	3
Course Detail	Provide in-depth treatment of the following advanced computer
	graphics and visualization topics: radiosity rendering and global
	illumination, procedure texturing and modelling, image-based
	rendering, stereo imaging, real-time volume graphics and
	interactive visualization.
	Prerequisite: CSC3260 or its equivalent.

Course Code	CSC5230
Course Title	ADV TOPICS IN COMPILER CONS'TION
Unit	3
Course Detail	Advanced topics in compiler construction, including code
	optimization, partial evaluation, supercompilers, compilation
	techniques for multiparadigm languages, concurrent compilers,
	etc.

Course Code	CSC5240
Course Title	COMB SEARCH & OPT W/ CONSTRAINTS
Unit	3
Course Detail	Students will be exposed to various constraint-based
	combinatorial search and optimization techniques that arise in
	artificial intelligence, operations research, etc. Topics include, but
	are not limited to, local propagation, consistency algorithms,
	Boolean constraint solving, numerical constraint solving, linear
	programming, search, and their applications.

Course Code	CSC5250
Course Title	INFO RETRIEVAL & SEARCH ENGINES
Unit	3
Course Detail	This course surveys the current research in information retrieval
	for the Internet and related topics. This course will focus on the
	theoretical development of information retrieval systems for
	multimedia contents as well as practical design and
	implementation issues associated with Internet search engines.
	Topics include probabilistic retrieval, relevance feedback,
	indexing of multimedia data and applications in e-commerce.

Course Code	CSC5280
Course Title	IMAGE PROCESSING & COMP VISION
Unit	3
Course Detail	Image processing: enhancement technique, image compression,
	segmentation, morphology, color image processing and
	restoration. Computer vision: representation, decision models,
	structural methods and image understanding.

Course Code	CSC5310
Course Title	TOPICS IN BIOMETRICS
Unit	3
Course Detail	This course introduces the fundamentals of biometrics the
	technology for secure identification and personal verification. The
	course is designed with a balance between the basic theoretical
	background and practical application. It examines pattern
	recognition, discriminant analysis, classification methods and
	other techniques used in designing and implementing biometric
	systems. In particular, the course investigates several key
	biometric features, e.g., face related processing, fingerprint
	analysis, handwriting verifications, speaker recognition, etc.

Course Code	CSC5320
Course Title	TOPICS IN GRAPH ALGORITHMS
Unit	3
Course Detail	A course on graph theory and graph algorithms with emphasis on
	the algorithmic aspects of graph theory. The course will cover
	classical topics such as search techniques, connectivity, colouring,
	matching and covering, network flows, planarity, traversability,
	perfect graphs and NP-completeness of graph problems. It will
	also cover recent advances in graph minors and fixed-parameter
	tractability of graph problems.
	Prerequisite: CSC3160 or its equivalent.

Course Code	CSC5330
Course Title	ADV ALGORITHMS FOR BIOINFOR
Unit	3
Course Detail	This course introduces the computational issues and algorithms in
	bioinformatics. Topics include algorithms for pairwise sequence
	comparison and alignment for DNA and protein sequences,
	multiple sequence alignment, analysis and prediction of protein
	secondary structure, etc. Techniques such as dynamic
	programming, Hidden Markov models, neural networks and their
	applications in bioinformatics will also be covered.

Course Code	CSC5340
Course Title	ADV TOPICS IN DIST SOFTWARE SYS
Unit	3
Course Detail	This course will provide knowledge of basic architectural features
	of distributed systems, including client-server systems, network
	systems, middleware systems and their main advantages,
	challenges, design issues and current solutions. Current
	object-oriented distributed system and software platforms
	(CORBA, DCOM, and Java/RMI) will be studied in detail. Topics
	include: distributed systems characteristics and design issues,
	distributed software engineering, communication and remote
	procedure calls, building distributed systems, generosity and
	interoperability, naming and trading services, concurrent processes
	and threads, transactions and distributed transactions, reliability
	and availability, and security problems and solutions. Laboratory
	of a series of distributed system projects will be assigned and
	conducted.

Course Code	CSC5350
Course Title	GAME THEORY IN COMPUTER SCIENCE
Unit	3
Course Detail	This course aims at introducing the theory and application of
	game theory in the context of Computer Science, in particular,
	decision making in multiagent systems. The course first focuses
	on rational behaviour of agents in strategic games and the
	existence of pure and mixed strategy Nash equilibrium. Then
	extensive games with and without perfect information, including
	bargaining games and repeated games will be introduced. The
	concepts of subgame perfect equilibrium and sequential
	equilibrium will be discussed. Finally, the course covers
	coalitional games and the concepts of cores and kernels.

Course Code	CSC5360
Course Title	GRID COMPUTING
Unit	3
Course Detail	This course is designed to give a broad overview of the concepts,
	technologies and open research areas of Grid computing along
	with the state-of-the-art in Grid software. Topics include
	architecture, programming, resource management, information
	infrastructure, security, data management, Grid middleware and
	tools, Web services, Grid services, current applications and
	research.

Course Code	CSC5390
Course Title	ADV TOPICS IN GPU PROGRAMMING
Unit	3
Course Detail	The evolution of consumer graphics hardwares leads to the
	introduction of parallel, programmable GPUs (Graphics
	Processing Units). The strong parallel computational power of
	GPUs not only supports real-time and realistic rendering, but also
	the cost-effective platform for scientific computing, such as
	physical simulation, numerical analysis, evolutionary
	computation, image processing, and computer vision, etc. This
	course introduces the evolution of shading language and GPU, the
	basic concept in GPU programming, and the recent advanced
	usage of GPU in computer graphics and general-purpose
	computing. Topics covered include: shader programming,
	procedural texture and modelling, programmable graphics
	pipeline, modern shading language, GPGPU (general-purpose
	computing on GPU), limitations of GPU, and case studies of
	advanced usages of GPU.
	Prerequisite: CSC3260 or equivalent.

Course Code	CSC5420
Course Title	COMP SYS PERFORMANCE EVALUATION
Unit	3
Course Detail	Computer system performance evaluation through analytical and
	simulation studies. Brief overview of queueing theory,
	computational algorithms, sequential and parallel simulation
	techniques. Performance evaluation in distributed resource
	allocation, computer interconnection architecture, multiprocessing
	and multithreads computation, parallel I/O architectures,
	distributed database concurrency control protocols, multiple
	access protocols in communication network, and parallel
	programming models, etc. Students are expected to have
	knowledge in probability, stochastic processes and computer
	architecture.

Course Code	CSC5430
Course Title	AUTONO. AGENTS & MULTIAGENT SYS.
Unit	3
Course Detail	Characteristics of autonomous agents. Agent architectures:
	BELIEF-DESIRE-INTENTION architecture, purely reactive
	architectures and hybrid architecture. Multiagent systems: speech
	acts theory, agent communication and agent cooperation protocols.
	Agent-oriented programming. Distributed hierarchical planning.
	Distributed rational decision making: protocols and strategies,
	Nash equilibrium and Pareto optimality, auctions, voting, Clarke
	tax, OCSM-contracts. Argumentation and negotiation.
	Prerequisite: CSC2110.

Course Code	CSC5460
Course Title	VIRTUAL & AUGMENTED REALITY
Unit	3
Course Detail	This course introduces the fundamental and advanced research
	topics in virtual and augmented reality (VR/AR), including
	VR/AR tools and metaphors, multi-sensory interactions,
	geometric and behavior modeling, touch-enabled interfaces,
	real-time immersive navigation, human factors in VR/AR,
	augmented reality systems, internet-based VR/AR applications.
	The web-basedvirtual reality interfaces plus other graphics
	engines build up the developing tools for testing the alternative
	ideas/solutions for the advanced VR/AR research and real-time
	applications.
	Prerequisite: CSC3260 or its equivalent.

Course Code	CSC5470
Course Title	COMPUTER AND NETWORK SECURITY
Unit	3
Course Detail	(Not for students who have taken IEG5240.) Issues of computer
	and network security. Security protocols. Firewalls. Computer
	viruses. Audit trails. System security threats. Applications of
	cryptography.
	Prerequisite: CSC4430 or CEG4430 or IEG3310 or its equivalent.

CEG Coures

Course Code	CEG3430
Course Title	EMBEDDED SYSTEMS
Unit	3
Course Detail	Introduction to microprocessor system developing methods such
	as memory and input/output interfacing techniques. Use of
	interrupts, timers and analogue to digital conversion methods for
	hardware system building will also be discussed. Introduction to
	logic system design methodologies including the use of
	programming logic devices and hardware description languages.
	Prerequisite: CEG2400.

Course Code	CEG3470
Course Title	DIGITAL CIRCUITS
Unit	3
Course Detail	This course examines the issues involved in designing and
	analysing digital circuits in CMOS technology. Topics include
	fabrication process, usage of SPICE, transfer characteristics, noise
	margin, loading effect, propagation delay, fanout analysis, transient
	current, power dissipation, bistable circuits and memories. A brief
	introduction to VLSI circuits is also included.
	Prerequisites: ERG2020 and ELE2110.

Course Code	CEG3480
Course Title	DIGITAL SYSTEMS DESIGN
Unit	3
Course Detail	Advanced interfacing techniques such as the use of sensors and
	actuators for signal analysis and control. High speed digital
	system design issues such as power consumption, signal delay,
	signal transmission and noise handling.
	Prerequisite: CEG2400.

Course Code	CEG3490
Course Title	VLSI DESIGN
Unit	3
Course Detail	This course teaches techniques in designing and analysing VLSI
	circuits. Topics include design rules, layout fundamentals,
	switch-level simulation, charge sharing, static and dynamic logics,
	propagation-delay estimates, power considerations, data-path
	organization, clocking schemes, synchronizers, asynchronous
	circuits, pads, systolic computation, silicon compiler, high-level
	synthesis and hardware description languages. Students will
	design complete IC's using both simple hand-layout programmes
	and CAD tools.
	Prerequisite: CEG3470.

Course Code	CEG5010
Course Title	RECONFIGURABLE COMPUTING
Unit	3
Course Detail	This course is concerned with the design of reconfigurable
	computing systems using hardware description languages. Topics
	covered include field programmable gate array architectures
	(FPGA), computer arithmetic, high-speed digital logic, interfacing
	and case studies. Emphasis will be on how to design
	high-performance digital systems at the algorithmic, system and
	logic level. Each student is required to implement and test a digital
	design of moderate complexity.
	Prerequisite: CEG3480.

Course Code	CEG5020
Course Title	FAULT-TOLERANT COMPUTING
Unit	3
Course Detail	Fault tolerance used to be a requirement of computer systems in
	specialized applications such as spacecraft control and telephone
	switching. With the advancement of hardware and software
	technology and the increasing complexity of computer systems,
	fault tolerance has become a necessity for a wide range of
	industrial, commercial and even personal applications. Models
	and methods are used in the analysis and design of fault-tolerant
	and highly reliable computer systems will be taught in this course.
	The topics to be covered by this course include fault/error
	modelling, reliability analysis, various redundancy techniques,
	fault-tolerant system design methods, case studies of fault-tolerant
	systems, and current research issues.
	Prerequisite: CEG3420 or CSC3420.

Course Code	CEG5270
Course Title	CAD FOR PHY DES OF DIGITAL SYS
Unit	3
Course Detail	This course aims to present the fundamental concepts and
	algorithms applied in design automation (CAD) of VLSI circuits.
	The scope will include various areas in physical design of digital
	systems, including circuit partitioning, FPGA technology
	mapping, floorplanning, placement, routing, compaction and
	interconnect optimization.
	Prerequisites: CSC2100 and ERG2020.

Course Code	CEG5330
Course Title	LOGIC SYNTHESIS & TESTING
Unit	3
Course Detail	This introductory course aims at building fundamental
	background and practical techniques for digital logic design
	automation and hardware testing conscious design issues. Some
	academic (Berkeley ESPRESSO/SIS) and industry tools will be
	introduced. The topics range from the classic to recent techniques
	on representation, manipulation and optimization of Boolean
	logic, minimization/manipulation of 2-level Sum-of-Product
	(SOP) form, large multi-level Boolean network synthesis,
	technology mapping, delay analysis, sequential logic synthesis,
	state minimization, retiming resynthesis, verification, advanced
	applications using Ordered Binary Decision Diagrams (OBDD's),
	hardware fault testing, and notions of design for testability.
	Prerequisites: CSC2100 and ERG2020.

IEG Coures

Course Code	IEG3050
Course Title	SIMULATION AND STATISTICAL ANALYSIS
Unit	3
Course Detail	System simulation, data analysis, statistical inference, regression,
	correlation and variance analysis, sensitivity analysis, variation
	reduction and importance sampling techniques for rare events.
	Workload representation and traffic generation. Experimental
	design. Basic queueing theory (Little's Law, M/M/1 and
	variations). Operational laws. Case studies on client-server
	systems.

Course Code	IEG4180
Course Title	NETWORK SOFTWARE DESIGN AND PROGRAMMING
Unit	3
Course Detail	This is a project-oriented course that teaches the development of
	network applications. Subject areas include object-oriented
	programming (C++ and Java); message-driven programming
	(windows); client-server systems design; interprocess
	communication; sockets: blocking and nonblocking I/O;
	multithreaded process; iterative and concurrent server designs;
	system-throughput bottlenecks; multimedia over network. Case
	studies: FTP, RPC, Web.

SEG Coures

Course Code	SEG3420
Course Title	FILE STRUCTURES AND PROCESSING
Unit	3
Course Detail	Role of files in data processing. Data organization on secondary
	storage. Choice of storage media. Blocking and buffering. Design
	of file parameters and performance computation of file processing.
	Record clustering and record partitioning. File organizations and
	access methods for sequential, indexed and direct file
	organizations. VSAM files. Static and dynamic hashed files.
	Hybrid files.
	Prerequisite: SEG3460 or with the approval of the course
	instructor.

Course Code	SEG3430
Course Title	INFORMATION SYSTEMS ANALYSIS AND DESIGN
Unit	3
Course Detail	Information system development life cycle; user requirement
	analysis; feasibility study; cost/benefit analysis; systems analysis
	tools such as data flow diagrams and process specification tools.
	Real time systems analysis. Transformation from analysis to
	design. Structured chart. System design quality heuristics such as
	coupling and cohesion. System design packaging and design
	optimization: CASE (Computer-Aided Software Engineering)
	Tools.
	Prerequisite: SEG3460 or with the approval of the course
	instructor.

Course Code	SEG3490
Course Title	INFORMATION SYSTEMS MANAGEMENT
Unit	3
Course Detail	In-depth discussion of the challenges, techniques and technologies
	associated with the management of IT in a competitive
	environment. The linkage of IT to business strategy and business
	process re-engineering. Type of information systems: MIS, DSS,
	TPS. Development process. Information system planning.
	Systems project management and control. IT acquisition,
	budgeting and deployment. Performance evaluation and auditing.
	Operations management. Privacy and security.
	Prerequisite: SEG3430 or with the approval of the course
	instructor.

DSE Coures

Course Code	DSE3020
Course Title	COMPUTER SIMULATION IN MANAGEMENT
Unit	3
Course Detail	This course teaches the use of simulation as an analysis and
	decision-making tool in business management environment.
	Various managerial issues, such as production planning and
	control, will be investigated to improve the operational efficiency
	by using computer simulation. A computer simulation software
	package will be used to build a "logical model" of business
	management process. Topics include concept of simulation,
	learning of the simulation software package (model design and
	building, execution, output analysis), random numbergenerator,
	model verification/validation, and the relevant management
	concepts.
	Prerequisites: DSE2010 and 2030.

Course Code	DSE4070
Course Title	DATA AND KNOWLEDGE MANAGEMENT
Unit	3
Course Detail	This course focuses on business data and knowledge modelling
	and management. We will examine the selection, representation,
	organization, and retrieval of data and knowledge. Topics such as
	data integrity, DBMS, data warehousing, knowledge acquisition
	and sharing, and knowledge management are covered.

Course Code	DSE4150
Course Title	ELECTRONIC COMMERCE
Unit	3
Course Detail	This course focuses on introducing Internet technology and its use
	in electronic business. Topics include eAdvertisement,
	eMarketing, B2C applications, B2B applications, mobile
	commerce, collaborative commerce, Internet management and
	security, electronic payment system, implementation, ethics, and
	electronic commerce development in Hong Kong and worldwide.
	Some new technologies and case studies may also be introduced
	in this course.
	Prerequisite: DSE2050 or permission from instructor.

Course Code	DSE4210
Course Title	DECISION SUPPORT AND KNOWLEDGE MANAGEMENT
	SYSTEMS
Unit	3
Course Detail	This course introduces students to the concepts and skills essential
	for the analysis, evaluation, design, and development of
	knowledge-based systems for enhancing decision performance. It
	will cover topics such as problem solving methods and strategies,
	development of computer-based decision models, knowledge
	acquisition, knowledge representation, design of knowledge-based
	intelligent systems, application of knowledge discovery and data
	mining techniques, such as neural network, genetic algorithms,
	and rule inductions.

MKT Coures

Course Code	MKT4080
Course Title	INTERNET MARKETING
Unit	3
Course Detail	The Internet is having a profound effect on the conduct of
	marketing as we move towards the new millennium. The Internet
	presents a fundamentally different environment for marketing, and
	new paradigms will have to be developed to take account of
	marketing activities in the electronic age. This course focuses
	primarily on the impact of the Internet on marketing, Internet
	marketing research, consumer behaviour on the Internet, and
	marketing strategies in the Internet age.
	Prerequisite: MKT2010.